skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sinha, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bhubaneswar, Odisha, experiences an increasing trend of heavy rainfall events (HREs). This study aims to configure the WRF mesoscale model configuration at a hectometre scale and undertakes numerical experiments at a 0.5 km grid spacing. The experiments simulate HREs and assess the various physical parameterization schemes to identify suitable combinations for the region. Sensitivity experiments with various physical parametrization options identified the top eight combinations based on rainfall statistics. Their performance was further evaluated by simulating an additional four HREs over Bhubaneswar. A novel rank analysis approach based on statistical techniques to determine the rank of each configuration. The Noah-MP; Ferrier; Multi-Scale Kain-Fritsch (MFS), Noah-MP;Ferrier; Kain-Fritsch (MFK), as well as Noah; Lin;No cumulus (NLN), and Noah; Ferrier; No cumulus (NFN) emerged as the top performers in simulating precipitation. The study also tested eight parameterization combinations for simulating air temperature, relative humidity, and wind speed. The top configurations change when a different variable is used as a reference. However, a broad choice of MFS, MFK, and Noah-MP; Ferrier; No cumulus (MFN) merged as the top configurations in simulating HRE characteristics. These model configurations were independently tested and yielded good performance in simulating the atmospheric pre-storm environment and storm characteristics. Broadly stated the choice of Noah-MP instead of the Noah land model, with Ferrier and Multi-Scale Kain-Fritsch schemes could yield good results- though there is no singular best potential. These findings help establish the computational framework for studying and improving the understanding of heavy rainfall, enhance weather hazard preparedness, and offer an optimized WRF model for forecasting HRE in cities. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Matsui, K.; Omatu, S.; Yigitcanlar, T.; González, S.R. (Ed.)
    Machine learning algorithms for medical diagnostics often require resource-intensive environments to run, such as expensive cloud servers or high-end GPUs, making these models impractical for use in the field. We investigate the use of model quantization and GPU-acceleration for chest X-ray classification on edge devices. We employ 3 types of quantization (dynamic range, float-16, and full int8) which we tested on models trained on the Chest-XRay14 Dataset. We achieved a 2–4x reduction in model size, offset by small decreases in the mean AUC-ROC score of 0.0%–0.9%. On ARM architectures, integer quantization was shown to improve inference latency by up to 57%. However, we also observe significant increases in latency on x86 processors. GPU acceleration also improved inference latency, but this was outweighed by kernel launch overhead. We show that optimization of diagnostic models has the potential to expand their utility to day-to-day devices used by patients and healthcare workers; however, these improvements are context- and architecture-dependent and should be tested on the relevant devices before deployment in low-resource environments. 
    more » « less
  3. Free, publicly-accessible full text available March 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available December 1, 2025
  6. Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  7. Free, publicly-accessible full text available November 1, 2025